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Vertex Spirals in Fullerenes and Their Implications for Nomenclature of
Fullerene Derivatives
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Introduction

The emergence of a rich chemistry of functionalised ful-
lerenes[1–4] has brought with it the need for systematic no-
menclature to distinguish between the many closely similar
isomeric forms derived by addition to a common underlying
cage structure. The IUPAC recipe for naming exohedral full-
erene derivatives[5,6] is based on vertex spirals and, as with
cookery recipes, the first problem is to find the ingredients.
Even if Mrs. Beeton never wrote the phrase, folklore has it
that her recipe for jugged hare starts with “First catch your
hare”. Here the problem would be “First find your vertex
spiral”.
The preamble to the IUPAC recipe for numbering the

carbon atoms of the cage states “The identification of a
well-defined and preferably contiguous helical numbering
pathway is the cornerstone of fullerene numbering”.[6] Rules
are given for choosing between alternative contiguous heli-
cal numbering pathways (in our terms, vertex spirals). It is

recognised that such pathways do not always exist: complex
rules are given for dealing with fullerenes having a non-trivi-
al rotational axis but no vertex spiral, and applied to a
number of fullerenes and other trivalent polyhedra. No rec-
ommendations are given for Cs, Ci and C1 fullerenes without
contiguous numbering, on the grounds that since “these ful-
lerenes have a large number of possible numbering path-
ways, it seems rather unlikely that a contiguous numbering
cannot be found for most of these structures” (§3.4.4).[6]

For easy use of the IUPAC recipe, the first requirement is
a vertex spiral, but it is known that a fullerene may have no
vertex spiral at all. An example[7] is the icosahedral isomer
of C80. Investigation of the essentially graph-theoretical
question of existence of a vertex spiral seems timely in the
light of these nomenclature recommendations. Will it be
necessary to invoke arcane rules for discontiguous number-
ing for a large number of fullerenes, or is Ih C80 a special
case? Is there a better solution, without exceptions?
Fullerenes are usually defined in chemistry as trivalent

polyhedral carbon cages composed entirely of pentagonal
and hexagonal faces, but in some contexts,[8] the class of ful-
lerenes is taken to include all trivalent polyhedra above
some minimal size. Apparently the vertex-spiral properties
of this larger class have not been discussed. Existence of
face spirals for trivalent polyhedra and in particular for ful-
lerenes has been discussed extensively, as the face spiral is
used in the earliest systematic method for fullerene enumer-
ation and construction;[9] all fullerenes on up to at least 176
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vertices[10] are known to have at least one face spiral, but
some large fullerenes (n�380) have no face spiral,[11–16] and
the smallest trivalent polyhedron without a face spiral has
only 18 vertices.[10] Within the range of present synthetic
chemical interest, the face-spiral approach is “safe” for ful-
lerenes, but the indications are that a vertex-spiral approach
is not.
In the present study, we check the existence of a vertex

spiral for chemically accessible fullerenes and other trivalent
polyhedra, and prove some results on infinite classes of
vertex unspirallable and vertex omnispiral polyhedra. It will
be seen that lack of a vertex spiral is not unusual for triva-
lent polyhedra and is a feature of a significant minority of
fullerenes in the chemical size range, both general and iso-
lated-pentagon. There are many conceivable fullerene deriv-
atives that are not nameable under IUPAC rules without re-
course to complex back-up procedures for discontiguous spi-
rals. We therefore take the opportunity to suggest an alter-
native, robust method based on breadth-first-search[17] that
is capable of naming all exohedral derivatives and is easily
automated.

Definitions

We deal with trivalent (known in mathematics as “cubic”)
polyhedral graphs in which by definition each vertex is con-
nected by edges to three neighbours, and for which there is
a unique embedding of the graph as a polyhedral framework
on the surface of the sphere, without holes or handles. Such
polyhedra have an even number of vertices, n. They have
3n/2 edges and n/2 + 2 faces.
The IUPAC description of the “helical pathway” is as fol-

lows:[6] “The construction of the pathway starts with the
numbering of a whole elementary ring of the fullerene.
Then, the numbering proceeds to cover all of the other
atoms keeping the pitch of the helix as small as possible
(keeping the movement “as tight as possible”) and maintain-
ing its clockwise or counterclockwise directionality.” The
vertex spiral is our interpretation of this description in terms
of an algorithm that works with the molecular graph.
We can imagine walking through the graph on the sphere,

going from vertex to vertex following edges according to a
“tight-winding” rule. The clockwise version of the walk is:
begin at a vertex and walk along edges, visiting no vertex
more than once, and taking at each vertex the path along
the rightmost unused edge. The counterclockwise version
takes the leftmost available edge at every step. The walk
stops at the first vertex that has no unused edge. If either
procedure, starting from some vertex, succeeds, that is,
allows us to visit all vertices of the polyhedron exactly once,
then the polyhedron has a vertex spiral. The procedure may
be started from any vertex, move initially along any one of
its three incident edges and keep to the right or the left, so
there are 6n possible vertex-spiral starts for an n-vertex tri-
valent polyhedron. This is the same as the number of possi-
ble face-spiral starts, as both are equal to the number of

flags (triples comprising a mutually adjacent vertex, edge
midpoint and face-centre) covering the polyhedron.
Each successful spiral and each spiral start can be seen as

a directed corkscrew-like curve on the polyhedral surface.
Only the identity operation leaves a given spiral in place; all
other operations of g, the point group (automorphism
group) of the polyhedron, shift the spiral, and so the site
symmetry of each spiral start is C1, the trivial group. Thus
each vertex-spiral start occurs in jg j isomorphic copies.
Three special cases are when a trivalent polyhedron turns

out to have no successful vertex-spiral start, only one suc-
cessful vertex spiral start up to isomorphism, or a successful
spiral from every one of the 6n spiral starts. These cases will
be called (vertex) aspiral (or unspirallable), unispiral and
omnispiral, respectively.

Method

To survey the vertex spiral characteristics of chemical
graphs, a search was made of three sample sets of graphs: i)
fullerene polyhedra on up to 120 vertices, ii) isolated-penta-
gon fullerenes on up to 150 vertices, iii) general trivalent
polyhedra on up to 24 vertices. Sets (i) and (ii) may be gen-
erated by the fully general pent-hex puzzle algorithm[18,19]

with the fullgen program (see http://cs.anu.edu.au/~bdm/
index.html) or by the face-spiral algorithm,[7,9] which is
known to be complete in this range. For convenience, in
what follows, the fullerene isomers Cn will be labelled n:p
by their vertex number and place in the list of lexicographi-
cally minimum face spirals (either the list of spirals of all
fullerenes or the list of spirals of the isolated-pentagon ful-
lerenes, depending on the context). Set (iii) is generated
using the plantri program[20] (see http://cs.anu.edu.au/~bdm/
plantri). General trivalent polyhedra will be labelled n :p, by
vertex number and place in the plantri generation order.
Given an adjacency list and a consistent rotation scheme
(i.e., a list of the three neighbours of each vertex, ordered
clockwise seen from outside the sphere) for each graph in
sets (i) to (iii), a computer program checks all 3n clockwise
and 3n counterclockwise vertex spiral starts.

Results

Fullerenes : Tables 1–3 report the results of the computer
search on the two sets of fullerenes. One immediate obser-
vation is that omnispiral fullerenes are rare: there are only
four found amongst the over ten million fullerenes with n�
120 (Table 1) and none amongst the set of isolated-pentagon
fullerenes with 120�n�150 (Table 2). These four are the
unique fullerene isomers of C20 and C24 and the unique iso-
lated-pentagon fullerene isomers of C60 and C72. The molec-
ular symmetries are Ih (C20 and C60, 120 symmetry opera-
tions) and D6d (C24 and C72, 24 operations).
Unispiral fullerenes are found with n�50 vertices. At

small n, roughly half the isomers have only the trivial C1
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symmetry and so have literally only one successful vertex
spiral, and this proportion increases as n increases (see
Table 1 and Table 2). An indication that there might be an
infinite series of unispiral fullerenes comes from inspection
of the unispiral isomers at n=50, 60, 70, ··· 120. At each of
these vertex counts, isomer n :1 in the face spiral ordering
has one vertex spiral; this isomer is the long thin cylindrical
fullerene with two hemidodecahedral caps and, in each case,

there are 20 symmetry-equivalent spirals starting on one
vertex of the central pentagon of the cap, running clockwise
or counterclockwise around that face and then spiralling
down the cylinder to the other cap. The smaller cylinders, at
n=30 and n=40 have additional successful vertex spiral
starts, but from n=50 onwards all those others fail.
Aspiral fullerenes are also apparently initially rare. All

fullerene isomers with n�54 vertices have at least one

Table 1. Vertex spiral characteristics of the general fullerenes Cn on up to 120 vertices.
[a]

n Nall Nomni Nuni(N1) Naspiral n Nall Nomni Nuni(N1) Naspiral

20 1 1 1(0) 0 72 11190 1 3(0) 0
24 0 1 0 0 74 14246 0 0 0
26 1 0 0 0 76 19151 0 0 1
28 2 0 0 0 78 24109 0 0 0
30 3 0 0 0 80 31924 0 0 1
32 6 0 0 0 82 39718 0 0 0
34 6 0 0 0 84 51592 0 0 3
36 15 0 0 0 86 63761 0 2(1) 4
38 17 0 0 0 88 81738 0 2(0) 9
40 40 0 0 0 90 99918 0 1(1) 2
42 45 0 0 0 92 126409 0 2(1) 15
44 89 0 0 0 94 153493 0 8(3) 11
46 116 0 0 0 96 191839 0 14(7) 14
48 199 0 0 0 98 231017 0 11(7) 9
50 271 0 1(0) 0 100 285914 0 17(8) 28
52 437 0 0 0 102 341658 0 36(19) 12
54 580 0 0 0 104 419013 0 67(29) 51
56 924 0 1(0) 1 106 497529 0 77(49) 29
58 1205 0 0 0 108 604217 0 116(59) 55
60 1812 1 2(0) 1 110 713319 0 143(85) 70
62 2385 0 0 0 112 860161 0 209 ACHTUNGTRENNUNG(152) 124
64 3465 0 1(0) 0 114 1008444 0 242 ACHTUNGTRENNUNG(190) 130
66 4478 0 0 0 116 1207119 0 362 ACHTUNGTRENNUNG(250) 236
68 6332 0 1(0) 1 118 1408553 0 427 ACHTUNGTRENNUNG(363) 233
70 8149 0 1(0) 0 120 1674171 0 641 ACHTUNGTRENNUNG(490) 455

[a] Nall, Nomni, Nuni and Naspiral are the numbers of all, omnispiral, unispiral and aspiral isomers, respectively. N1 is the number of isomers with exactly one
successful spiral, that is, the unispiral isomers of C1 symmetry.

Table 2. Vertex spiral characteristics of the isolated-pentagon fullerenes Cn on up to 150 vertices.
[a]

n Nipr Nomni Nuni Naspiral n Nipr Nomni Nuni Naspiral

60 1 1 0 0 110 2355 0 0 0
70 1 0 0 0 112 3342 0 0 1
72 1 1 0 0 114 4468 0 0 0
74 1 0 0 0 116 6063 0 0 0
76 2 0 0 0 118 8148 0 0 0
78 5 0 0 0 120 10774 0 1 2
80 7 0 0 1 122 13977 0 0 0
82 9 0 0 0 124 18769 0 1 1
84 24 0 0 0 126 23589 0 0 0
86 19 0 0 0 128 30683 0 1 2
88 35 0 0 0 130 39393 0 0 0
90 46 0 0 0 132 49878 0 1 20
92 86 0 0 0 134 62372 0 2 2
94 134 0 0 0 136 79362 0 2 1
96 187 0 0 0 138 98541 0 1 3
98 259 0 0 0 140 121354 0 3 8
100 450 0 0 0 142 151201 0 2 0
102 616 0 0 0 144 186611 0 7 8
104 823 0 0 0 146 225245 0 3 7
106 1233 1 0 0 148 277930 0 4 8
108 1799 0 0 0 150 335569 0 7 2

[a] Nipr, Nomni, Nuni and Naspiral are the numbers of all, omnispiral, unispiral and aspiral isomers, in the class, respectively. Of the 35 unispiral isomers, one
at n=142 and three at 148 have trivial C1 symmetry.
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spiral. The first vertex nonspirallable fullerene is the Td
isomer 56:622 which has four fused triples of pentagonal
faces (Figure 1). The vertices fall into orbits (equivalent
sets) of 4, 4, 12, 12 and 24, with site symmetries C3v, C3v, Cs,

Cs, C1 and hence there are 1+1+3+3+6=14 non-isomor-
phic spiral starts. It is not difficult to verify from Figure 2
that all 14 fail, each ending prematurely in a cul-de-sac
where the last added vertex has no free edge along which to
continue the spiral.
Beyond n=56, the examples of vertex unspirallable ful-

lerenes occur at first at multiples of 4 and then for all fuller-
ene values of n. Figure 1 shows the first three vertex aspiral
fullerenes. From n=84 onwards, at least one unspirallable
isomer is found for every fullerene number in the range in-
vestigated. Exactly 100 unspirallable fullerenes have n�100;
1495 have n�120. Unspirallable fullerenes are not confined
to high symmetry groups. As Table 3 shows, 19 of the 28
possible fullerene point groups are already represented in

the first 100 examples, and in particular the trivial group C1
occurs 18 times and the reflection group Cs seven times, so
that the IUPAC recipe would need to be augmented by
rules for discontiguous spirals also for the groups of low
order.
Only one isolated-pentagon fullerene without a vertex

spiral occurs for n�100: the isomer 80:31924 in the se-

Figure 1. The smallest vertex unspirallable fullerenes, 56:622, 60:1784 and
68:677 shown as projections of the 3D structures.

Figure 2. A Schlegel-like representation (with one vertex at infinity) of
56:622 illustrating examples of the five symmetry distinct vertex types
and their multiplicities (black circles). An example of a failed spiral start
is marked on the diagram: it starts from the vertex in the C3v site at the
fusion of three hexagons, and terminates at the vertex marked with the
open circle.

Table 3. Vertex unspirallable fullerene isomers Cn on up to 100 vertices.
[a]

n P (g)

56 622 (Td)
60 1784ACHTUNGTRENNUNG(D6h)
68 677ACHTUNGTRENNUNG(D3h)
76 8226(T)
80 31924(Ih)
84 32744(C2) 32745(D2) 32830(D2)
86 17265(D3) 19855 ACHTUNGTRENNUNG(C3v) 22424 ACHTUNGTRENNUNG(C2v) 27096(C2)
88 3656(C2) 14798(D2) 23665 ACHTUNGTRENNUNG(D2d) 23667(D2) 23668 ACHTUNGTRENNUNG(D2h)

61421(D2) 62952(C3) 62981(D2) 63969 ACHTUNGTRENNUNG(D2d)
90 3948(C1) 98692 ACHTUNGTRENNUNG(D3h)
92 4851ACHTUNGTRENNUNG(D3d) 4865(Cs) 33532(C2) 33544(C2) 38532(D2)

39302(C3) 39303(Td) 47684(C2) 47782(C2) 96995 ACHTUNGTRENNUNG(D2d)
113067(C2) 113071(C2) 124265 ACHTUNGTRENNUNG(C2v) 124600(C2) 124604 ACHTUNGTRENNUNG(D2h)

94 1655ACHTUNGTRENNUNG(C2v) 1660(C2) 5267(Cs) 8650(C1) 44925(Cs)
78698(C1) 79908(C1) 94734(C1) 94754(C1) 105111(C1)
150732 ACHTUNGTRENNUNG(C2v)

96 368ACHTUNGTRENNUNG(D2h) 10289(C1) 43912(C2) 54836(D2) 56114(Cs)
966379 ACHTUNGTRENNUNG(D6d) 111555(C1) 113579(C2) 113705(C2) 130774(C1)
131127(C1) 132509(C1) 164170(C2) 191202 ACHTUNGTRENNUNG(D6h)

98 6879(C1) 7364(C1) 10936(C2) 26753(C2) 48572(C2)
52063(Cs) 157559(C2) 157879(C2) 167534(Cs)

100 2991(D2) 10050(C2) 57850(C2) 64542(C2) 72989(C2)
89519(C1) 90830(C1) 121316(C2) 124136 ACHTUNGTRENNUNG(C2h) 124137(D2)
132483(C1) 173461(C2) 181481(C2) 188369(C2) 188370(C2)
192261(C3) 200253 ACHTUNGTRENNUNG(C2h) 200482(D2) 200989(C2) 246033(C2)
263917(S4) 263918(D2) 272117(C2) 275093 ACHTUNGTRENNUNG(C2v) 275192(C1)
275576(C2) 275802(Cs) 285136 ACHTUNGTRENNUNG(C3v)

[a] Isomers are listed as n :p where p is the place in the lexicographic face-spiral order of the full set of fullerene isomers on n vertices. The point group
symmetry g, is also given for each isomer. The eleven isomers marked in bold are those that have unspirallable leapfrogs.
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quence of general fullerenes, which is 80:7 in the isolated-
pentagon sequence. This is the icosahedral isomer already
noted. It has two symmetry-distinct vertices, in sites of C3v
and Cs symmetry, respectively, and hence 1+3 distinct spiral
starts, all of which terminate early. Beyond n=112, exam-
ples of vertex unspirallable isolated-pentagon fullerenes
occur sporadically (Table 2).
The list of aspiral fullerenes in the tables can be compared

with the examples of fullerenes in the same size range with-
out contiguous numbering quoted in the IUPAC docu-
ment.[6] The examples are: a D6h isomer of C60 (§3.2.5), a C2v
isomer of C70 (§3.2.6), an Ih isomer of C80 (§3.2.7), a C3v
isomer of C82 (§3.2.8), a D2d isomer of C84 (§3.2.9), and a Td
isomer of C112 (§3.2.10). The first two have their pentagons
arranged in six pentalene-type fused pairs; the remainder
have isolated pentagons. The six examples can be identified
as 60:1784, 70:7720 in the general fullerene list, and 80:7,
82:8, 84:23, 112:3342 in the isolated-pentagon list. The C60
and C80 cases are confirmed by our calculations as vertex
unspirallable, as is the isomer of C112 (icosahedral C80 and
this tetrahedral isomer of C112 are the first two isolated-pen-
tagon vertex aspiral fullerenes). However, three of the ex-
amples that are listed as aspiral[6] do in fact have vertex spi-
rals—70:7720, 82:8 and 84:23 have 44, 66 and 144 (11, 11
and 18 symmetry-distinct) vertex spirals, respectively. The
discontiguous vertex numbering proposed in reference [6]
can be avoided for these three fullerenes. The search used
there to detect vertex spirals apparently missed out some of
the possibilities by concentrating only on spiral starts on or
near to a rotational axis, leading to incorrect assignments in
these cases.
It is also natural to inquire whether the occurrence of

vertex unspirallable fullerenes will continue beyond the
range of n of immediate chemical interest. Direct testing of
all isomers soon becomes prohibitively expensive, but some
systematic soundings can be taken. For example, all icosahe-
dral fullerenes are available by the Goldberg construc-
tion.[7,21, 22] Icosahedrally symmetric fullerenes occur at

n ¼ 20 ði2 þ ij þ j2Þ,

where the integers (i, j) obey i � j�0, i + j>0. Testing of
the 21 icosahedral isomers with n<1000 yields mainly
vertex aspiral fullerenes. The unique icosahedral isomers at
n=20, 60, 140 and 380 have 1, 3, 6 and 1 symmetry-distinct
vertex spirals, respectively. All other icosahedral fullerenes
in the range, including electronically closed-shell isomers
whenever n is divisible by 3, are vertex aspiral. In contrast,
all icosahedral fullerenes have face spirals.[23]

The smallest known fullerene graph without a face spiral
has 380 vertices.[11] It has no vertex spiral, and nor have any
of the other 27 examples of tetrahedrally symmetric ful-
lerenes without a face spiral that are presented in the same
paper.
Various expansion techniques for fullerenes and other tri-

valent polyhedra are based on generalisations of the Gold-
berg construction. The leapfrog transformation,[7,24] l, is

significant in electronic-structure theory as, starting from
any fullerene isomer Cn, it yields a fullerene C3n with a prop-
erly closed shell ;[25] geometrically, the leapfrog of a fullerene
can be found by truncating all vertices of the dual, or by
capping all faces and taking the dual, and it retains all faces
of the parent, rotated and separated from one another by
new hexagons.
Another operation, quadrupling, q, also possesses a

simple geometrical interpretation, as it arises by chamfering
all edges, and hence preserves all original faces as unrotated
inset facets surrounded by hexagons.[26] Both operations stay
within the class of fullerenes when applied to a fullerene
parent. For example, the unique vertex unspirallable isomer
of C80 is the quadruple of C20. The operation q in particular
seems to show a tendency to increase the number of aspi-
rals: for example, at n=40, the 40 C40 isomers include no as-
piral cases and nor do their leapfrogs, but the set of quadru-
ples includes 7; at n=60, the 1812 C60 include 1 aspiral case,
and their leapfrogs only 5, but the set of 1812 quadruples in-
cludes 219. When l and q are applied to the set of all full-
erene isomers with 20�n�100, we find 24018 vertex un-
spirallable fullerenes and 389488 vertex unspirallable ful-
lerenes (from 1456598 parent fullerenes of which only 100
were themselves unspirallable). Note that, by construction,
all of these have isolated pentagons, and all the leapfrogs
have ideal closed-shell p-electron configurations. Leapfrog-
ging of the 100 unspirallable fullerenes with n�100 produ-
ces only 11 fullerenes that are themselves vertex unspiralla-
ble whereas, intriguingly, all 100 unspirallable fullerenes
with n�100 are found to have unspirallable quadruples. In
the range, at least, quadrupling one unspirallable fullerene
produces another unspirallable fullerene.

Trivalent polyhedra : Results of vertex-spiral testing for the
general trivalent polyhedra on n=4 to 24 vertices are shown
in Table 4. Figure 3 shows some of the smallest unspirallable
trivalent polyhedra in Schlegel representation. Vertex spiral-
ling fails very early in the series, and the unspirallable poly-
hedra are numerous. For n�24, there are 40190 aspiral
cases out of a total of 398438 polyhedra, that is, more than
10% have no vertex spiral, in a range where only about
0.75% are without face spirals.
The smallest example, 16:209, has Td symmetry and is the

quadruple of the tetrahedron itself, with the same relation
to the smallest trivalent polyhedron as the first isolated-pen-
tagon vertex unspirallable fullerene, C80, to the smallest full-
erene, C20. The four distinct spiral starts are all easily seen
to fail (Figure 4). Amongst the seven 18-vertex trivalent
polyhedra without vertex spirals, 18:489 is of particular in-
terest. It is derived by truncation of all vertices of the trigo-
nal prism and is the smallest trivalent polyhedron without a
face spiral.[10] Hypothetical C18 and derivatives C18Xq based
on this cage would be doubly un-nameable under the basic
versions of the face- and vertex-spiral nomenclature rules.
There are many more examples of trivalent polyhedra that
have neither face nor vertex spirals, as Table 4 shows. For
n�28, over one half of the trivalent polyhedra that have no
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face spiral,[10] have no vertex spiral either. All four combina-
tions of vertex and face spirallable/unspirallable occur for
the small trivalent polyhedra. Several examples of larger tri-
valent polyhedra with face sizes four and six that have no

contiguous helical vertex numbering under the IUPAC
scheme are known.[6]

Triangular faces act as “traps” for vertex (and face) spirals
in that, if a spiral passes through two vertices of a triangular
face and does not immediately take in the third vertex, then
it must either return later to terminate on that vertex, or
must miss it out altogether. Informally speaking, a trivalent
polyhedron cannot “afford” too many triangular faces if it is
to have successful spirals. The importance of triangles for
the small aspiral trivalent polyhedra can be seen by compar-
ing the counts of general, triangle-free and bipartite aspiral
isomers (see Table 4). When triangles are excluded, the
number of aspiral trivalents in the range 4�n�24 drops
from 40190 to three, of which two are bipartite. The three
are illustrated in Figure 3i–k. The trivalent polyhedra that
maximise the number of triangular faces at each n are the
tetrahedron and the omnitruncates (those polyhedra ob-

Table 4. Vertex spiral characteristics of the trivalent polyhedra on up to 24 vertices.[a]

n Nall Nomni Naspiral Nface (Nfv) Nbip Nbip-a Ntf Ntf-a

4 1 1 0 0 0 0 0 0
6 1 1 0 0 0 0 0 0
8 2 1 0 0 1 0 1 0
10 5 1 0 0 0 0 1 0
12 14 1 0 0 1 0 2 0
14 50 1 0 0 1 0 5 0
16 233 1 1 0 2 0 12 0
18 1249 1 7 1(1) 2 0 34 0
20 7595 2 126 11(6) 8 0 130 0
22 49566 1 2529 184(97) 8 0 525 1
24 339722 2 37527 2800 ACHTUNGTRENNUNG(1690) 32 2 2472 2

[a] Nall, Nomni, Nuni and Naspiral are the numbers of all, omnispiral, unispiral and aspiral isomers, respectively. An entry in parentheses in the unispiral
column indicates the number of unispiral isomers that have the trivial C1 symmetry. Nface is the number of face aspiral trivalent polyhedra,

[10] of which Nfv
are both face and vertex aspiral. Nbip is the number of bipartite trivalent polyhedra and Nbip-a is the number of these without vertex spirals. Ntf is the
number of triangle-free trivalent polyhedra and Ntf-a is the number of these without vertex spirals. For n=26 and 28, the numbers Nface (Nfv) are 41763
(28490) and 612755 (452485), respectively.

Figure 3. Small vertex unspirallable trivalent polyhedra, represented in
Schlegel-diagram form: a) 16:209 (Td), the smallest vertex aspiral triva-
lent polyhedron, b) 18:128 (C2), c) 18:176 (Cs), d) 18:296 (C2), e) 18:387
(C2), f) 18:489 (D3h), the smallest face aspiral trivalent polyhedron, g)
18:1015 (Cs), h) 18:1098 (Cs), i) 22:28723 (C3v), the smallest triangle-free
aspiral trivalent polyhedron, j) 24:40542 (C2v), and k) 24:40954 (C2h), the
smallest aspiral bipartite trivalent polyhedra.

Figure 4. Illustration of the vertex unspirallable character of the trivalent
polyhedron 16:209. All four distinct spiral starts terminate early on a
vertex of one of the four triangular faces. A black circle denotes the ini-
tial vertex, and a black cross the final vertex in each case.
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tained by truncation of a trivalent polyhedron on all verti-
ces). As will be seen below, apart from the tetrahedron and
its omnitruncate, these maximum-triangle trivalent poly-
hedra are all both vertex and face unspirallable.

Infinite classes of aspiral and omnispiral trivalent polyhedra :
The result that the 18-vertex truncated prism, 18:489, is un-
spirallable is part of a general pattern. It has been shown
that, with the sole exception of the truncated tetrahedron,
all those trivalent polyhedra produced by truncation of all
vertices (“omnitruncation”) of a trivalent parent are without
face spirals.[15] It is easy to see that the omnitruncates of tri-
valent polyhedra, with the same exception of the truncated
tetrahedron, are also without vertex spirals. A sketch pictori-
al proof is given in Figure 5, where it is seen that all spiral

starts from a typical vertex terminate on a face that has an
edge in common with the triangle containing the initial
vertex. Only for the truncated triangle is one of the types of
spiral start consistent with exhaustion of all vertices. Thus
we have the result that truncation on all vertices of any tri-
valent polyhedron with n>4 yields a trivalent polyhedron
that has neither a face spiral nor a vertex spiral.
Another question, motivated by the observation on quad-

rupling of the first 100 aspiral fullerenes, is whether the
quadrupling operation always preserves unspirallable char-
acter. A more limited result is easily proved, again pictorial-
ly (Figure 5b). When an aspiral truncated trivalent poly-
hedra is quadrupled, the resulting trivalent polyhedron is
itself aspiral. The proof depends on inspection of nine cases

of spiral starts in the generic configuration and is not given
here. The result is: truncation on all vertices of any trivalent
polyhedron with n>4, followed by quadrupling, q, yields a
trivalent polyhedron that has no vertex spiral.
As quadrupling and omnitruncation (q and t, respective-

ly) do not commute, the two previous observations imply
the existence of at least two distinct aspiral trivalent poly-
hedra on 24n vertices (n even, n > 4) for every n-vertex tri-
valent polyhedron P, one [=q(t(P))] with n and one
[=t(q(P))] with 4n triangular faces.
The survey of the small trivalent polyhedra also reveals

some patterns for the vertex omnispiral property. In the
range 4�n�24 there is one omnispiral isomer at each
vertex number except at n=20 and 24, where there are two.
One isomer at 20 and one at 24 are accounted for by the ful-
lerenes—these are the dodecahedral C20 and the sixfold-
symmetric barrel-shaped C24 fullerenes. The omnispiral
polyhedron with n=4 is the tetrahedron. All the remaining
cases turn out to be n/2-gonal prisms. The typical member
of the series has D(n/2)h symmetry, with all vertices equiva-
lent, and a total of three distinct spiral starts (the exception
is for n=8, the cube, where the symmetry is Oh and all
spiral starts are equivalent). It is easy to show (Figure 6
gives a sketch proof) that the q-gonal prism is vertex omni-
ACHTUNGTRENNUNGspiral for all q.

The two fullerene examples in the omnispiral list suggest
the definition of a barrel graph: the [4n]-barrel is the triva-
lent polyhedron constructed by taking an n-gon and circum-
scribing it successively with two rings of n pentagons. The
fullerenes C20 and C24 are barrels with n=5 and 6, respec-
tively. The typical member of the series has D(4n)d symmetry,
with vertices falling into two sets of size 2n, and a total of
six distinct spiral starts (the exception is for n=5, where the
symmetry is Ih and all vertices are equivalent). As Figure 7
shows, all six spirals complete successfully if the polar poly-
gon is large enough; for n=3 and n=4, some spiral starts
terminate early, so that although [12]- and [16]-barrels have
vertex spirals, they are not omnispiral. We can conclude that
the [4n]-barrel with n>4 is vertex omnispiral. In this con-
nection it is interesting to note that the only vertex omnispi-
ral fullerenes of which we are aware are the two [4n]-barrel
fullerenes and their leapfrogs.

An alternative: BFS numbering : Given that atom number-
ing using a single vertex spiral is not possible for all ful-

Figure 5. Two series of vertex aspiral polyhedra. a) Scheme of pictorial
proof that omnitruncation of trivalent polyhedra larger than the tetrahe-
dron leads to polyhedra without vertex spirals. For the typical vertex
(black circle) all spiral starts terminate at X on a nearby face (only clock-
wise starts are shown). The truncated tetrahedron is small enough for all
vertices to be covered by the termination of the spiral start of the third
type; otherwise all spiral starts of all types fail. b) Construction of an as-
piral trivalent polyhedron from a parent, by truncation on all vertices
(centre) and quadrupling (right). The three typical vertex types are indi-
cated as black dots. If the parent is any trivalent polyhedron except the
tetrahedron, all spiral starts fail.

Figure 6. Scheme of pictorial proof that prisms are vertex omnispiral. The
vertices are all equivalent and occupy sites of Cs symmetry, with three
distinct spiral starts, all of which succeed for all sizes of polar polygon.
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lerenes, even on the strictest definition of a fullerene, vari-
ous approaches are possible. As with face spirals[27] it is pos-
sible to devise a backtracking approach to restart the spiral
at some well defined nearest point after a dead-end. The
IUPAC rules include procedures for choosing these discon-
tiguous spirals in certain cases. If the special simplicity of
the vertex-spiral approach is to be lost, then it seems better,
as the authors of reference [28] argue, to use a more firmly
based and computer-codable algorithm. The particular num-
bering method they proposed[28] is to take the smallest possi-
ble binary molecular code obtained from the adjacency
matrix when its rows are read from left to right and from
top to bottom, but this has a very poor complexity (it be-
longs to the class of problems known as #P-complete[29]) and
will rapidly become very expensive for large fullerenes.
There are no known polynomial-time algorithms for finding
such an adjacency matrix and, since the problem is #P-com-
plete, it is unlikely that one exists.
A much simpler idea is to use a canonical breadth-first-

search labelling. Two common ways of traversing a graph
are Depth First Search (DFS) and Breadth First Search
(BFS).[17] The aim in both is to visit each vertex of a graph
exactly once: in DFS, a path is followed as far as possible
before backing up; in BFS, all neighbours of the current
node are visited before backing up. A special form of BFS
will be used here.
Given an embedding of a graph, a rotation system is an

adjacency list where the neighbours of each vertex are listed
in clockwise order. The neighbour lists are considered to be
cyclic and so it is traditional when a well-defined representa-
tion is required to select the starting point of the list so that
the neighbour lists are lexicographically minimised. A clock-
wise breadth first search is a special type of breadth first
search[17] which is applied to a rotation system. It starts with
a specified root vertex r, and first child u.

The neighbours of a vertex are always traversed in clock-
wise order starting with vertex u for vertex r and the BFS-
parent for the other vertices. The vertices are renumbered
by the order in which they are visited by this BFS and this
results in a relabelled rotation system.
It is well-known that any 3-connected planar graph has a

unique planar embedding[30] (considering that reversal of the
sense of clockwise gives the same embedding). To obtain a
canonical form for any 3-connected planar graph, apply a
clockwise-BFS to the embedding and also its flip (the em-
bedding obtained by reversing the sense of clockwise). Each
re-labelled rotation systems is then converted to a sequence
of integers as follows:

1) Write down n.
2) For each vertex vi, i=1, 2, 3, . . , n, write down the
degree of vi followed by the list of neighbours as labelled
by the clockwise-BFS in clockwise order, starting with
the smallest neighbour.

The smallest such sequence lexicographically is defined to
be the canonical form for the graph.
It is easy to argue that for a fullerene, the canonical form

must result from a clockwise-BFS where vertices 1, 2 and 4
lie on a pentagon. This is because the canonical form (see
Figure 8) starts with

n
3 2 3 4
3 1 5 6
3 1 7 8
3 1 9 10
3 2 x y

and x is 10 if F1 in Figure 8 is a pentagon, but otherwise x is
equal to 11. Similarly, it is better to have both faces F1 and

Figure 7. Scheme of pictorial proof that members of an infinite class of
trivalent polyhedra are vertex omnispiral. In generic [n]-barrels there are
distinct polar and equatorial vertices in sites of Cs symmetry, implying six
distinct starts. Types (iii), (v) and (vi) terminate early for n=3, and types
(iv) and (v) terminate early for n=4, but all six lead to vertex spirals for
all larger central polygons.

Figure 8. Clockwise BFS canonical form for a fullerene. Starting the BFS
search for a fullerene: F1, F2 and F3 are faces of the fullerene: each may
be a hexagon, in which case the squared vertex is present, or a pentagon
consisting of the circled vertices only.
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F2 as pentagons, and the best possible situation is when F1,
F2 and F3 are all pentagons.
This requirement means that for any fullerene there are

at most 120 potential starting locations which could lead to
a minimum sequence and that the dodecahedron and the
isolated-pentagon fullerenes are the only fullerenes that re-
quire potentially 120 iterations of the clockwise-BFS to find
the canonical form. Note that the algorithm finds all the au-
tomorphisms of the graph (these correspond to the clock-
wise BFS labellings that give rotation systems equal to the
canonical system) on the way to determining the canonical
form, and the maximum number of these for a fullerene is
also 120. BFS-clockwise canonical form thus gives an effi-
cient and completely robust way to determine the point
group, in addition to the labelling.
An algorithm runs in O(n) time if there is some constant

c such that the number of machine operations taken by the
algorithm is at most cQn on any reasonable machine. Since
an individual clockwise-BFS takes O(n) time, and canonical
form for a fullerene can be computed with a constant
number of clockwise-BFS (120), it takes at most O(n) total
time in the worst case to compute the canonical form for a
fullerene. It is not possible to have a better worst-case time
complexity given a rotation system of the fullerene as input,
since it requires at least this amount of time to examine the
input.
Figure 9 shows the canonical clockwise-BFS numberings

for the smallest vertex-aspiral fullerene, 56:622, and for the
two main experimental fullerenes, isolated-pentagon C60 and
C70. The procedure delivers a numbering Scheme for any 3-
connected planar graph.
The canonical form we are computing could also be used

as an efficient test for checking whether or not a polyhedral
molecule is chiral. The two enantiomers of a chiral fullerene
receive the same canonical labelling under the present
scheme, as the procedure tries out both the embedding of
the graph and the inverted embedding with the rotation
scheme reversed on all vertices, and takes the overall lexico-
graphically minimal labelling. To check chirality, we would
carry out three steps:

1) Find G1, the minimum BFS labelling considering only
the 3n possible starts of G.

2) Find G2, the minimum BFS labelling considering only
the 3n possible starts of the flip of G.

3) If G1 is the same labelled graph as G2 then the molecule
is achiral, otherwise the molecule is chiral.

If two enantiomers are to have the same canonical form,
we use the minimum from the pair {G1, G2} as the canonical
form (as the code does now). This means that in some cases
the canonical “clockwise BFS” labelling will correspond to
the flip of the embedding. We could assign a different label-
ling to each enantiomer by simply taking G1, and not check-
ing G2.
Various extensions of the BFS scheme can be envisaged

for different applications. For example, a heterofullerene

could be treated by labelling the vertices additionally with
an atom type; then the embedding would be ordered ac-
cording to (vertex number, atom type) rather than number

Figure 9. Clockwise BFS canonical form numberings of a) the smallest
vertex-aspiral fullerene 56:622, b) [60]-fullerene, c) [70]-fullerene.
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alone; likewise, bonds of different type could be distinguish-
ed in the neighbour lists as (neighbour number, bond type).
This would allow labellings that were specific to KekulT
structures. Addends could be incorporated into the vertex
labels, and the strings compared as before to find canonical
forms when it was required to obtain a realisation of the
symmetry group of a particular fullerene derivative.

Conclusion

This paper set out to explore some aspects of the vertex
spiral, the basis of the proposed IUPAC nomenclature for
fullerene derivatives. From the calculations on the fullerene
graphs, it was found that there are 100 vertex-unspirallable
isomers with at most 100 vertices, 1495 with at most 120 ver-
tices and 66 isolated-pentagon vertex-unspirallable isomers
with at most 150 vertices. As a percentage, these constitute
a minute fraction of the total number of mathematically
possible isomers, and some of them have energetically un-
favourable pentagon fusions, but the set does include many
chemically plausible isolated-pentagon isomers. In the wider
class of trivalent polyhedra, many aspiral cases were found
and it was shown that an infinite number of vertex-aspiral
cases are easily constructed using the operations of trunca-
tion and quadrupling. There is a hint that the quadrupling
operation may always produce an unspirallable polyhedron
from an unspirallable parent.
These findings can be read optimistically, as saying that

many fullerenes are covered within the vertex-spiral ap-
proach, or pessimistically, as pointing out that this approach
is ad hoc. One of the advantages of the vertex-spiral ap-
proach is said to be its intuitive appeal and the possibility of
using it “by hand” but, as we have seen, this process can
itself be error-prone.[6] Once the need for computer checking
is acknowledged, it seems logical to use the BFS numbering
proposal, which is easily coded and covers all cases without
exceptions or the need for complex sets of rules and sub-
rules. In fact, the BFS numbering proposal is not only com-
plete, but it is also easier to implement, even “by hand”. To
test in a general fullerene for the existence of a vertex
spiral, a linear number of spiral starts must be explored. To
find the canonical BFS scheme, only a constant number of
spiral starts need ever be explored (a canonical scheme
starts on a pentagon). It would seem logical to switch to a
nomenclature scheme based on clockwise BFS.
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